
Resource Allocation in
Competitive Multiagent Systems

Kevin Leyton-Brown

Overview

• Multiagent systems
– autonomy; asymmetric information

– cooperative: same interests

– competitive: selfish

• Resource allocation in multiagent systems
– cooperative: behavioral protocol can be imposed

– competitive: agents can’t be trusted to follow a protocol

• Explore interactions between Economics/Game Theory
and Computer Science
1. GT problems with CS solutions

2. CS problems with GT solutions

3. Bidirectional interactions; synthesis

Topics

problems
come from
GT/Econ

bidding
clubs

local-effect
games

load balancing
in networks

combinatorial auction
winner determination:

algorithms; testing

empirical hardness
models; portfolios

problems
come from

CS
applied theoretical

Why auctions?

• Theoretical framework for resource allocation among
self-interested agents
– e.g., social welfare maximization; revenue maximization

• They’re big ($$$)
– and the internet is changing the way they’re used

What you need to know about auctions

• They’re a broader category than often perceived

• Of special interest: Combinatorial auctions
– hot topic in CS for past four years

– auctions where bidders can request bundles of goods

– interesting because of complementarity and substitutability

$29

$126

$297

$325

Movie

VCR

TV

$196

Winner Determination Problem

• Input: n goods, m bids

• Objective: find revenue-maximizing non-conflicting
allocation

What’s known about WDP

Equivalent to weighted set packing, NP-Complete

1. Approximation
– best guarantee is within factor of

– economic mechanisms can depend on optimal solution

2. Polynomial special cases
– very few (ring; tree; totally unimodular matrices)

– allowing unrestricted bidding is the whole point

3. Complete heuristic search
– CASS [Fujishima, Leyton-Brown, Shoham, 1999]

– CABOB [Sandholm, 1999; Sandholm, Suri, Gilpen, Levine, 2001]

– GL [Gonen & Lehmann, 2001]

– CPLEX [ILOG Inc., 1987-2003]

Where do we stand?

• Best solutions (e.g., CPLEX):
– often blindingly fast

– but sometimes very slow

• Problem I: Are we testing on the right data?
– Legacy [Sandholm, 1999]; [Fujishima, Leyton-Brown, Shoham, 1999]

– CATS [Leyton-Brown, Pearson, Shoham, 2000]

• Problem II: How can we understand why performance
varies so drastically?
– use machine learning to predict running time

[Leyton-Brown, Nudelman, Shoham, 2002]

Empirical Hardness Models

• Our goal: emulate success in understanding the
hardness of (e.g.) satisfiability instances, but:
– we have an optimization problem

– and a very high dimensional one

• If we are nonetheless successful, we will be able to:
– go get coffee while the algorithm is running

– build algorithm portfolios

– tune distributions for hardness

– in general, gain insight into the sources of hardness

• Case study of these models on WDP
– recent work: applied these ideas to SAT

Empirical Hardness Methodology

1. Select optimization algorithm

2. Select set of distributions

3. Define problem size

4. Select features

5. Generate instances

6. Compute running time, features

7. Learn running time model

Features

1. Linear Programming
– L1, L2, L∞ norms of integer slack vector

2. Price
– stdev(prices)

– stdev(avg price / num goods)

– stdev(average price / sqrt(num goods))

3. Bid-Good graph
– node degree stats (max, min, avg, stdev)

4. Bid graph
– node degree stats

– edge density

– clustering coefficient (CC), stdev

– avg min path length (AMPL)

– ratio of CC to AMPL

– eccentricity stats (max, min, avg, stdev)

Bid

Bid

Bid

Bid

Good

Good

Good

Bid

Bid Bid

BidBid

Experimental Setup

Goods

• Problem size: goods, undominated bids

• Nine distributions (legacy; CATS)
– sample parameters uniformly from given ranges

– generate 500 instances/distribution: 4500 per dataset

• Three datasets:
– 256 goods, 1000 non-dominated bids

– 144 goods, 1000 non-dominated bids

– 64 goods, 2000 non-dominated bids

• Experiments:
– 32-machine cluster of 550 MHz Xeons, Linux 2.12

– collecting data took approximately 3 years of CPU time!

– running times varied from 0.01 sec to 22 hours (CPLEX capped)

Bid: $50Bid: $100

0.1
1

10

10
0

10
00

10
00

0

10
00

00
M

atching

Scheduling

Exponential

W
eighted Random

Regions

Decay

Arbitrary

Binom
ial

Uniform

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

P
e
rc

e
n
ta

g
e
 I

n
 c

la
s s

Runtime

Ma g nitude

(se co nds)

Gross Hardness (144 goods, 1000 bids)

Distribution

0

50

100

150

200

250

300

350

C
o
u
n
t

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

Absolute Error

Linear - RMSE 0.436

Quadratic - RMSE 0.216

Learning

• Linear regression
– ignores interactions

between variables

• Consider 2nd degree
polynomials
– variables: pairwise

products of original
features

– total of 325

• We tried various
other non-linear
approaches; none
worked better.

(test set)

Understanding Models: RMSE vs. Subset Size

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

RMSE of the complete model

RMSE of the linear model

Cost of Omission (subset size 6)

0 20 40 60 80 100

BG edge density *
Integer slack L1 norm

Integer slack L1 norm

BGG min good degree
* Clustering Coefficient

Clustering deviation *
Integer slack L1 norm

BGG min good degree
* BGG max bid degree

Clustering coefficient *
Average min path length

Boosting as a Metaphor for Algorithm Design
[Leyton-Brown, Nudelman, Andrew, McFadden, Shoham, 2003]

Boosting (machine learning technique):

1. Combine uncorrelated weak classifiers into aggregate

2. Train new classifiers on instances that are hard for
the aggregate

Algorithm Design with Hardness Models:

1. Hardness models can be used to select an algorithm
to run on a per-instance basis

2. Use portfolio hardness model as a PDF, to induce a
new test distribution for design of new algorithms

Portfolio Results

0

100

200

300

400

500

600

700

800

CPLEX Optimal Portfolio

0

1000

2000

3000

4000

5000

6000

GL CASS CPLEX

T
im

e
(s

)

CASS
GL
CPLEX

Optimal Algorithm Selection Portfolio Algorithm Selection

Distribution Induction

• We want our test distribution to generate problems
in proportion to the time our portfolio spends on them

– D: original distribution of instances

– Hf: model of portfolio runtime (hf: normalized)

• Goal: generate instances from D · hf

– D is a distribution over the parameters of an instance generator

– hf depends on features of generated instance

• Use rejection sampling

0.1
1

10

10
0

10
00

10
00

0

10
00

00
M

atching

Scheduling

Exponential

W
eighted Random

Regions

Decay

Arbitrary

Binom
ial

Uniform

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

P
e
rc

e
n
ta

g
e
 I

n
 c

la
ss

Runtime

Ma g nitude

(se co nds)

Matching

0%

20%

40%

60%

80%

100%

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 5 10
Runtime (s)

Original

Hard

Topics

problems
come from
GT/Econ

bidding
clubs

local-effect
games

load balancing
in networks

combinatorial auction
winner determination:

algorithms; testing

empirical hardness
models; portfolios

problems
come from

CS
applied theoretical

Focused Loading

• Many users demand network
resources at a focal time

• Example: long distance phone

– want to talk as early as
possible, minimize cost

– max utility when rates drop:
network demand spikes

• Computer networks: load can be
even more focused

– sudden onset: TicketMaster
server as tickets go on sale

– deadline: IRS server just before
taxes are due

• Idea: provide incentives for users
to defocus their own loads

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

5.0%

5.5%

6.0%

8 9 10 11 12 13 14 15 16 17 18

Hour

P
e
rc

e
n
ta

g
e
 o

f
0
0
-2

4
 C

a
ll

s

Rates drop from

Peak to Shoulder

Quarterly Trunk Calls on Weekdays in
the United Kingdom, December 1975

[Mitchell, 1978]

[Leyton-Brown, Porter, Prabhakar, Venkataraman, Shoham, 2001; 2003]

Things you need to know from Game Theory

• Game:
– players/agents

– actions

– strategies

– payoffs

• Equilibrium
– stable strategies

– weak/strict

– mixed/pure

• Mechanism design

Our Model

• Network resource: use is divided into t timeslots

• Each slot has a fixed usage cost m

• n agents will use the network resource for one slot each
– slot is preferred by all agents

• Agent ai’s valuation for slot s is vi(s). Two cases:
1. all agents have the same v

2. mechanism designer knows bounds: vl and vu

• d(s) is the number of agents who choose slot s

• Give agents incentive to balance load, but make
small computational demands on the network resource
– waive the usage fee for slot s with probability p(s)

– q: expected number of free slots

Mechanism Evaluation, Optimality

The mechanism designer has two goals:
1. maximize expected revenue

2. balance load caused by the agents’ selection of slots

Expressed in tradeoff function z

Optimality: A mechanism-equilibrium pair is optimal if it
maximizes z, as compared to all other equilibria in
other mechanisms (constant n, participation rational)

ε-optimality: z - zopt is bounded by nε

Theorem 1: The optimal mechanism-equilibrium pair has a
weak equilibrium (complete indifference). [same v]

Theorem 2: No strict, optimal equilibrium exists

“Collective Reward”
1. The mechanism signals agents with slot numbers

– c(s): the number of agents given signal s

2. Each agent chooses a slot

3. The mechanism computes p, and determines which
slots will be made (retroactively) free

Lemma 1: Assigning each agent the signal that greedily
improves z gives rise to optimal d

Lemma 2: Strict equilibrium ϕ: ai chooses slot c(i)

Theorem 3: (CR, ϕ) is ε-optimal [same v]

Theorem 4: (CR, ϕ) is k-optimal,
[different v]

Topics

problems
come from
GT/Econ

bidding
clubs

local-effect
games

load balancing
in networks

combinatorial auction
winner determination:

algorithms; testing

empirical hardness
models; portfolios

problems
come from

CS
applied theoretical

Computation-Friendly Game Representations

• In practice, interesting games are large;
computing equilibrium is hard

• CS agenda: compact representation, tractable computation
– independencies/modularity [La Mura, 2000], [Kearns, Littman, Singh, 2001],

[Vickrey & Koller, 2002]

– symmetries [Roughgarden & Tardos, 2001], [Kearns & Mansour, 2002]

• Congestion games (slightly simplified) [Rosenthal, 1973]

– each agent i selects an action a

– D(a) is the number of agents who choose action a

– Fa(·) are arbitrary functions for each a

– agent i pays

• Example: traffic congestion

Local Effect Games
[Leyton-Brown & Tennenholtz, 2003]

• An agent can be made to pay more because another
agent chooses a different but related action
– location problem: ice cream vendors on the beach

• neigh(a) is the set of actions that locally affect agents
who choose action a

• Fa,a’(·) is the cost due to the local effect from action a
to action a’

• Agent i pays

16

7

9

7

15

7

5

5

5

7

9

5

7

5

9

15

7

9

7

15

7

5

5

5

7

Local Effect Graphs

Local Effect Games

1. Compact representation

– context-specific independence between actions

– symmetry among players’ utility functions

2. What about finding equilibria?

– theoretical: exploit special properties
• pure-strategy Nash equilibrium

– computational
• myopic best-response dynamics

Main Technical Results

A B

A B

C

Main Technical Results

Computational Results

14

10

1

14

1

10

log/log. Node 3, edge 1. 50 agents

11 5 2

5

11

115

node: 3·log(x+1) edge: log(x+1)
50 agents

node: 3·log(x+1) edge: log(x+1)
50 agents

16

7

9

7

15

7

5

5

5

7

9

5

7

5

9

15

7

9

7

15

7

5

5

5

7

log/log; node 4, edge 1; 200 agents

16

4

18

4

17

6

8

9

5

7

9

0

8

8

13

8

6

8

13

8

3

12

3

7

log/log; node 4, edge 1; 200 agents

Computational Results

16

7

9

7

15

7

5

5

5

7

9

5

7

5

9

15

7

9

7

15

7

5

5

5

7

Grid Mod GridBin TreeT Arbitrary

Convergence for Arbitrary

0

5

10

15

20

25

30

35

0 20 40 60 80 100

Number of A gents

S
te

p
s

to
 C

o
n
v
e
rg

e
n
c
e

0

5

10

15

20

25

30

35

40

45

0 50 100 150 200

Number of A gents

S
te

p
s

to
 C

o
n

v
er

g
en

c
e

T

Arbitrary

Bin Tree

Grid

Mod Grid

Resource Allocation in
Competitive Multiagent Systems

problems
come from
GT/Econ

bidding
clubs

local-effect
games

load balancing
in networks

combinatorial auction
winner determination:

algorithms; testing

empirical hardness
models; portfolios

problems
come from

CS
applied theoretical

Thanks!

• to my advisor, Yoav Shoham

• to members of my committee:
– Andrew Ng, Moshe Tennenholtz (reading)

– Daphne Koller, David Kreps (orals)

• to coauthors of the work presented here:
1. Eugene Nudelman; Galen Andrew; Jim McFadden; Yoav Shoham

2. Ryan Porter; Balaji Prabhakar; Yoav Shoham; Shobha
Venkataraman

3. Moshe Tennenholtz

• to other coauthors of work in my thesis:
– Navin A.R. Bhat, Yuzo Fujishima, Mark Pearson

• to members of the multiagent group, past & present

• to many friends who offered help and support

• to my family and my girlfriend, Judith

And thanks for your attention!

Distribution Induction

• D: original distribution of instances

• Hf: model of portfolio runtime
– hf: normalized for interpretation as a density function

• Goal: generate instances from D · hf
– D is a distribution over the parameters of an instance generator

– hf depends on features of generated instance

• Rejection sampling
1. Create model of hardness Hp using parameters of the instance

generator as features; normalize it to create a PDF hp

2. Generate an instance from D · hp

3. Keep the sample with probability proportional to

4. Else, goto 2

	Resource Allocation in Competitive Multiagent Systems
	Overview
	Topics
	Why auctions?
	What you need to know about auctions
	Winner Determination Problem
	What’s known about WDP
	Where do we stand?
	Empirical Hardness Models
	Empirical Hardness Methodology
	Features
	Experimental Setup
	Gross Hardness (144 goods, 1000 bids)
	Learning
	Understanding Models: RMSE vs. Subset Size
	Cost of Omission (subset size 6)
	Boosting as a Metaphor for Algorithm Design
	Distribution Induction
	Topics
	Focused Loading
	Things you need to know from Game Theory
	Our Model
	Mechanism Evaluation, Optimality
	“Collective Reward”
	Topics
	Computation-Friendly Game Representations
	Local Effect Games
	Local Effect Games
	Main Technical Results
	Main Technical Results
	Computational Results
	Computational Results
	Resource Allocation in Competitive Multiagent Systems
	Thanks!
	Distribution Induction

